Lockman-SWIRE: Validation Checks (FULL)

In [1]:
%matplotlib inline
#%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt
plt.rc('figure', figsize=(10, 6))
plt.style.use('ggplot')

import numpy as np
from astropy.table import Table
import itertools

import time
In [2]:
t0 = time.time()

catname = "/data/help/master_catalogue_lockman-swire_20171201.fits"
master_catalogue = Table.read(catname)

print('Elapsed time(secs): ', time.time() - t0)

print("Number of sources in master catalogue: ", len(master_catalogue))
Elapsed time(secs):  96.35521364212036
Number of sources in master catalogue:  4366298
In [3]:
field = master_catalogue["field"][0]
field = field.rstrip()    # remove whitespaces at the end of the sting
print(field)
Lockman SWIRE
In [4]:
field = "Lockman-SWIRE"
In [5]:
%%javascript
IPython.OutputArea.auto_scroll_threshold = 9999;
In [10]:
u_bands = ["WFC u",           "Megacam u"]
g_bands = ["WFC g", "GPC1 g", "Megacam g"]
r_bands = ["WFC r", "GPC1 r", "Megacam r"]
i_bands = ["WFC i", "GPC1 i", "Megacam i"]
z_bands = ["WFC z", "GPC1 z", "Megacam z"]
y_bands = [         "GPC1 y", "Megacam y"]
J_bands = [                            "WFCAM J"]
H_bands = []
K_bands = [                            "WFCAM K"]

all_bands = [u_bands, g_bands, r_bands, i_bands, z_bands, y_bands]

irac_bands = ["IRAC i1", "IRAC i2", "IRAC i3", "IRAC i4"]

opt_mags = u_bands + g_bands + r_bands + i_bands + z_bands + y_bands
ir_mags = J_bands + H_bands + K_bands + irac_bands

other_bands = []

all_mags = opt_mags + ir_mags + other_bands
In [7]:
# No aperture magnitude -> add empty columns
for mag in ["Megacam i", "Megacam y"]:
    basecol = mag.replace(" ", "_").lower()
    m_ap_col, merr_ap_col = "m_ap_{}".format(basecol), "merr_ap_{}".format(basecol)
    
    master_catalogue[m_ap_col] = [np.nan] * len(master_catalogue)
    master_catalogue[merr_ap_col] = [np.nan] * len(master_catalogue)

1/ Magnitude errors

In [8]:
def mag_vs_err(x, y, fig, ax, labels=("x", "y"), savefig=False):

    x_label, y_label = labels
    print(x_label)

    # Use only finite values
    mask = np.isfinite(x) & np.isfinite(y) & (x!=99.) & (y!=99.)
    x = np.copy(x[mask])
    y = np.copy(y[mask])
   
    if len(x) > 0:
        print("    Error max: {:.0f}".format(np.max(y)))
        err10 = y > 10
        if len(x[err10]) > 0:
            print("    magerr > 10: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err10]), np.min(x[err10])))
        else:
            print("    magerr > 10: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err10]), np.nan))
        err100 = y > 100
        if len(x[err100]) > 0:
            print("    magerr > 100: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err100]), np.min(x[err100])))
        else:
            print("    magerr > 100: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err100]), np.nan))
        err1000 = y > 1000
        if len(x[err1000]) > 0:
            print("    magerr > 1000: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err1000]), np.min(x[err1000])))
        else:
            print("    magerr > 1000: Number of objects = {:d}, min mag = {:.1f}".format(len(x[err1000]), np.nan))
    else:
        print("    no data")
    print("")


    # Plot
    ax.set_yscale('log')    # to place before scatter to avoid issues
    ax.scatter(x, y, marker='.', alpha=0.1, s=50)
    ax.invert_xaxis()
    #ax.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
    #ax.get_xaxis().get_major_formatter().labelOnlyBase = False
    ax.set_xlabel(labels[0])
    ax.set_ylabel(labels[1])

    # Save ex. fig
    if savefig:
        survey_label = ((x_label.replace(" ", "_")).replace("(", "")).replace(")", "")
        figname = field + "_magVSmagerr_" + survey_label + ".png"
        plt.savefig("/data/help/plots/" + figname, bbox_inches='tight')
    #plt.show()
        
In [11]:
for mag in all_mags:
    fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 6))
    
    basecol = mag.replace(" ", "_").lower()
    
    if basecol == "megacam_u":
        savefig = True
    else:
        savefig=False
        
    col, ecol = "m_ap_{}".format(basecol), "merr_ap_{}".format(basecol)
    mag_vs_err(master_catalogue[col], master_catalogue[ecol], fig, ax1,
               labels=("{} mag (aperture)".format(mag), "{} magerr (aperture)".format(mag)), savefig=False)

    
    col, ecol = "m_{}".format(basecol), "merr_{}".format(basecol)
    mag_vs_err(master_catalogue[col], master_catalogue[ecol], fig, ax2,
               labels=("{} mag (total)".format(mag), "{} magerr (total)".format(mag)), savefig=savefig)
    
    display(fig)
    plt.close()
WFC u mag (aperture)
    Error max: 18
    magerr > 10: Number of objects = 1, min mag = 28.7
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC u mag (total)
    Error max: 9
    magerr > 10: Number of objects = 0, min mag = nan
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

Megacam u mag (aperture)
    Error max: 89
    magerr > 10: Number of objects = 1084, min mag = 30.0
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

Megacam u mag (total)
    Error max: 90
    magerr > 10: Number of objects = 3594, min mag = 29.8
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC g mag (aperture)
    Error max: 23
    magerr > 10: Number of objects = 3, min mag = 28.7
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC g mag (total)
    Error max: 95
    magerr > 10: Number of objects = 8, min mag = 28.5
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

GPC1 g mag (aperture)
    Error max: 23044
    magerr > 10: Number of objects = 1921, min mag = 5.9
    magerr > 100: Number of objects = 198, min mag = 6.9
    magerr > 1000: Number of objects = 22, min mag = 13.7

GPC1 g mag (total)
    Error max: 19529
    magerr > 10: Number of objects = 1981, min mag = 5.2
    magerr > 100: Number of objects = 201, min mag = 9.6
    magerr > 1000: Number of objects = 23, min mag = 13.2

Megacam g mag (aperture)
    Error max: 89
    magerr > 10: Number of objects = 136, min mag = 30.9
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

Megacam g mag (total)
    Error max: 89
    magerr > 10: Number of objects = 666, min mag = 30.6
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC r mag (aperture)
    Error max: 69
    magerr > 10: Number of objects = 11, min mag = 25.2
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC r mag (total)
    Error max: 180
    magerr > 10: Number of objects = 46, min mag = 24.4
    magerr > 100: Number of objects = 5, min mag = 30.3
    magerr > 1000: Number of objects = 0, min mag = nan

GPC1 r mag (aperture)
    Error max: 98365
    magerr > 10: Number of objects = 486, min mag = 5.7
    magerr > 100: Number of objects = 43, min mag = 24.4
    magerr > 1000: Number of objects = 7, min mag = 28.8

GPC1 r mag (total)
    Error max: 21398
    magerr > 10: Number of objects = 498, min mag = 6.9
    magerr > 100: Number of objects = 49, min mag = 26.7
    magerr > 1000: Number of objects = 3, min mag = 32.4

Megacam r mag (aperture)
    Error max: 87
    magerr > 10: Number of objects = 4, min mag = 33.1
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

Megacam r mag (total)
    Error max: 82
    magerr > 10: Number of objects = 38, min mag = 30.8
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC i mag (aperture)
    Error max: 79
    magerr > 10: Number of objects = 16, min mag = 26.9
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC i mag (total)
    Error max: 728
    magerr > 10: Number of objects = 27, min mag = 23.1
    magerr > 100: Number of objects = 4, min mag = 29.3
    magerr > 1000: Number of objects = 0, min mag = nan

GPC1 i mag (aperture)
    Error max: 5285
    magerr > 10: Number of objects = 428, min mag = 17.0
    magerr > 100: Number of objects = 45, min mag = 22.6
    magerr > 1000: Number of objects = 3, min mag = 25.5

GPC1 i mag (total)
    Error max: 5744
    magerr > 10: Number of objects = 458, min mag = 23.4
    magerr > 100: Number of objects = 42, min mag = 26.5
    magerr > 1000: Number of objects = 4, min mag = 30.3

Megacam i mag (aperture)
    no data

Megacam i mag (total)
    Error max: 1
    magerr > 10: Number of objects = 0, min mag = nan
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC z mag (aperture)
    Error max: 19
    magerr > 10: Number of objects = 2, min mag = 26.1
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFC z mag (total)
    Error max: 27
    magerr > 10: Number of objects = 1, min mag = 26.5
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

GPC1 z mag (aperture)
    Error max: 11237
    magerr > 10: Number of objects = 951, min mag = 21.6
    magerr > 100: Number of objects = 95, min mag = 26.5
    magerr > 1000: Number of objects = 6, min mag = 30.4

GPC1 z mag (total)
    Error max: 4517
    magerr > 10: Number of objects = 1278, min mag = 22.0
    magerr > 100: Number of objects = 108, min mag = 25.7
    magerr > 1000: Number of objects = 7, min mag = 29.5

Megacam z mag (aperture)
    Error max: 88
    magerr > 10: Number of objects = 262, min mag = 29.3
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

Megacam z mag (total)
    Error max: 90
    magerr > 10: Number of objects = 2735, min mag = 28.4
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

GPC1 y mag (aperture)
    Error max: 14783
    magerr > 10: Number of objects = 2075, min mag = 9.9
    magerr > 100: Number of objects = 210, min mag = 9.9
    magerr > 1000: Number of objects = 22, min mag = 9.9

GPC1 y mag (total)
    Error max: 12978
    magerr > 10: Number of objects = 2593, min mag = 9.4
    magerr > 100: Number of objects = 258, min mag = 9.4
    magerr > 1000: Number of objects = 25, min mag = 9.4

Megacam y mag (aperture)
    no data

Megacam y mag (total)
    Error max: 1
    magerr > 10: Number of objects = 0, min mag = nan
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFCAM J mag (aperture)
    Error max: 2282
    magerr > 10: Number of objects = 13, min mag = 27.6
    magerr > 100: Number of objects = 2, min mag = 30.9
    magerr > 1000: Number of objects = 1, min mag = 33.8

WFCAM J mag (total)
    Error max: 712
    magerr > 10: Number of objects = 95, min mag = 22.4
    magerr > 100: Number of objects = 8, min mag = 29.0
    magerr > 1000: Number of objects = 0, min mag = nan

WFCAM K mag (aperture)
    Error max: 37
    magerr > 10: Number of objects = 4, min mag = 27.9
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

WFCAM K mag (total)
    Error max: 305
    magerr > 10: Number of objects = 38, min mag = 25.8
    magerr > 100: Number of objects = 2, min mag = 30.5
    magerr > 1000: Number of objects = 0, min mag = nan

IRAC i1 mag (aperture)
    Error max: 9398
    magerr > 10: Number of objects = 618, min mag = 21.0
    magerr > 100: Number of objects = 63, min mag = 22.6
    magerr > 1000: Number of objects = 5, min mag = 32.8

IRAC i1 mag (total)
    Error max: 5110
    magerr > 10: Number of objects = 732, min mag = 18.4
    magerr > 100: Number of objects = 58, min mag = 23.5
    magerr > 1000: Number of objects = 3, min mag = 26.1

IRAC i2 mag (aperture)
    Error max: 56300
    magerr > 10: Number of objects = 2349, min mag = 20.4
    magerr > 100: Number of objects = 217, min mag = 20.9
    magerr > 1000: Number of objects = 23, min mag = 31.5

IRAC i2 mag (total)
    Error max: 4916
    magerr > 10: Number of objects = 910, min mag = 18.7
    magerr > 100: Number of objects = 61, min mag = 19.5
    magerr > 1000: Number of objects = 6, min mag = 32.1

IRAC i3 mag (aperture)
    Error max: 3
    magerr > 10: Number of objects = 0, min mag = nan
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

IRAC i3 mag (total)
    Error max: 5
    magerr > 10: Number of objects = 0, min mag = nan
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

IRAC i4 mag (aperture)
    Error max: 0
    magerr > 10: Number of objects = 0, min mag = nan
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

IRAC i4 mag (total)
    Error max: 3
    magerr > 10: Number of objects = 0, min mag = nan
    magerr > 100: Number of objects = 0, min mag = nan
    magerr > 1000: Number of objects = 0, min mag = nan

2/ Magnitude and error issues

In [28]:
def flag_mag(mask, x1, y1, x2, y2, mask2=None, x3=None, y3=None, mask3=None,
             labels1=("x", "y"), labels2=("x", "y"), labels3=("x", "y"), nb=2,
             irac=False, savefig=False):

    if nb == 1 and not irac:
        fig, (ax1) = plt.subplots(ncols=1, figsize=(6, 6))
    elif nb == 2 or (nb == 1 and irac and x3 is None):
        fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 6))
    elif nb > 2 or (nb == 1 and x3 is not None):
        fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(16, 6))
    
    # mag vs magerr
    ax1.set_yscale('log')    # to place before scatter to avoid issues
    ax1.scatter(x1, y1, marker='.', alpha=0.1, s=50)
    ax1.plot(x1[mask], y1[mask], 'b.')
    if mask2 is not None and nb >= 2:
        ax1.plot(x1[mask2], y1[mask2], 'g.')
    ax1.invert_xaxis()
    ax1.set_xlabel(labels1[0])
    ax1.set_ylabel(labels1[1])
    
    if nb == 1 and irac:
        # IRAC mag
        ax2.set_yscale('log')    # to place before scatter to avoid issues
        ax2.scatter(x2, y2, marker='.', alpha=0.1, s=50)
        ax2.plot(x2[mask2], y2[mask2], 'b.')
        ax2.invert_xaxis()
        ax2.set_xlabel(labels2[0])
        ax2.set_ylabel(labels2[1])
        
    if nb == 1 and x3 is not None:
        # IRAC mag with i3
        ax3.set_yscale('log')    # to place before scatter to avoid issues
        ax3.scatter(x3, y3, marker='.', alpha=0.1, s=50)
        ax3.plot(x3[mask3], y3[mask3], 'b.')
        ax3.invert_xaxis()
        ax3.set_xlabel(labels3[0])
        ax3.set_ylabel(labels3[1])
    
    # Comparing magnitudes
    if nb >= 2:
        ax2.scatter(x2, y2, marker='.', alpha=0.1, s=50)
        ax2.plot(x2[mask], y2[mask], 'b.')
        if mask2 is not None:
            ax2.plot(x2[mask2], y2[mask2], 'g.')
        ax2.invert_xaxis()
        ax2.invert_yaxis()
        ax2.set_xlabel(labels2[0])
        ax2.set_ylabel(labels2[1])
    
    if nb >= 3:
        ax3.scatter(x3, y3, marker='.', alpha=0.1, s=50)
        ax3.plot(x3[mask], y3[mask], 'b.')
        if mask2 is not None:
            ax3.plot(x3[mask2], y3[mask2], 'g.')
        ax3.invert_xaxis()
        ax3.invert_yaxis()
        ax3.set_xlabel(labels3[0])
        ax3.set_ylabel(labels3[1])
    
    # Save ex. fig
    if savefig:
        survey_label = ((labels1[0].replace(" ", "_")).replace("(", "")).replace(")", "")
        if "GPC1 " in labels1[0]:
            figname = field + "_gpc1Issues_" + survey_label + ".png"
        elif "DECam" in labels1[0]:
            figname = field + "_decamIssues_" + survey_label + ".png"
        elif "IRAC" in labels1[0]:
            figname = field + "_iracIssues_i1_i2.png"
        plt.savefig("/data/help/plots/" + figname, bbox_inches='tight')
        
    display(fig)
    plt.close()

2.a Pan-STARRS Aperture and Total magnitudes

In [13]:
# PanSTARRS forced photometry catalogue
ps1_err = 0.0010860000038519502

bands = ['g', 'r', 'i', 'z', 'y']

for i, surveys in enumerate([g_bands, r_bands, i_bands, z_bands, y_bands]):
    surveys.insert(0, surveys.pop(surveys.index('GPC1 '+ bands[i])))
    print(surveys[0])
    
    if len(surveys) == 1:
        basecol1 = surveys[0].replace(" ", "_").lower()
        col1 = "m_ap_{}".format(basecol1)
        x2, labels2 = None, None
    else:
        basecol1, basecol2 = surveys[0].replace(" ", "_").lower(), surveys[1].replace(" ", "_").lower()
        col1, col2 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2)
        x2 = master_catalogue[col2]
        labels2 = ("{} (aperture)".format(surveys[1]), "{} (aperture)".format(surveys[0]))
    ecol1 = "merr_ap_{}".format(basecol1)
    
    if len(surveys) >= 3:
        basecol3 = surveys[2].replace(" ", "_").lower()
        col3 = "m_ap_{}".format(basecol3)
        x3, y3 = master_catalogue[col3], master_catalogue[col1]
        labels3 = ("{} (aperture)".format(surveys[2]), "{} (aperture)".format(surveys[0]))
    else:
        x3, y3, labels3 = None, None, None
        
    if basecol1 == 'gpc1_g':
        savefig = True
    else:
        savefig = False

        
    mask = np.where(master_catalogue[ecol1] == ps1_err)    
    print ('   Number of flagged objects:', len(master_catalogue[ecol1][mask]))

    flag_mag(mask, master_catalogue[col1], master_catalogue[ecol1],
                    x2, master_catalogue[col1], 
                    x3=x3, y3=y3,
                    labels1=("{} mag (aperture)".format(surveys[0]), "{} magerr (aperture)".format(surveys[0])),
                    labels2=labels2,
                    labels3=labels3, nb=len(surveys), savefig=savefig)
GPC1 g
   Number of flagged objects: 284
GPC1 r
   Number of flagged objects: 353
GPC1 i
   Number of flagged objects: 276
GPC1 z
   Number of flagged objects: 203
GPC1 y
   Number of flagged objects: 107

2.c IRAC Aperture magnitude

In [29]:
irac_mag = 3.9000000001085695

bands = ['IRAC i1', 'IRAC i2', 'IRAC i3']
    
basecol1, basecol2, basecol3 = bands[0].replace(" ", "_").lower(), bands[1].replace(" ", "_").lower(), bands[2].replace(" ", "_").lower()
col1, col2, col3 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2), "m_ap_{}".format(basecol3)
ecol1, ecol2, ecol3 = "merr_ap_{}".format(basecol1), "merr_ap_{}".format(basecol2), "merr_ap_{}".format(basecol3)
    
mask1 = np.where(master_catalogue[col1] == irac_mag)[0]   
print ('IRAC i1: Number of flagged objects:', len(master_catalogue[col1][mask1]))

mask2 = np.where(master_catalogue[col2] == irac_mag)[0]  
print ('IRAC i2: Number of flagged objects:', len(master_catalogue[col2][mask2]))

mask3 = np.where(master_catalogue[col3] == irac_mag)[0]  
print ('IRAC i3: Number of flagged objects:', len(master_catalogue[col3][mask3]))

flag_mag(mask1, master_catalogue[col1], master_catalogue[ecol1],
         master_catalogue[col2], master_catalogue[ecol2], mask2=mask2,
         x3=master_catalogue[col3], y3=master_catalogue[ecol3], mask3=mask3,
         labels1=("{} mag (aperture)".format(bands[0]), "{} magerr (aperture)".format(bands[0])),
         labels2=("{} mag (aperture)".format(bands[1]), "{} magerr (aperture)".format(bands[1])),
         labels3=("{} mag (aperture)".format(bands[2]), "{} magerr (aperture)".format(bands[2])),
         nb=1, irac=True, savefig=True)
IRAC i1: Number of flagged objects: 166
IRAC i2: Number of flagged objects: 56
IRAC i3: Number of flagged objects: 4

3/ Outliers

$$chi^2 = \frac{(mag_{1}-mag_{2})^2}{magerr_{1}^2 + magerr_{2}^2}$$


Interquartile range (IQR) and outliers:
We consider as outliers objects which have a high $chi^2$, about $5\sigma$ away from the mean.
$25th, 75th \;percentile = 0.6745\sigma$
$IQR = (75th \;percentile - 25th \;percentile) = 0.6745\sigma * 2 = 1.349\sigma$
$75th \;percentile + 3.2\times IQR = 0.6745\sigma + 3.2\times1.349\sigma = 5\sigma$

$$outliers == [chi^2 > (75th \;percentile + 3.2\times (75th \;percentile - 25th \;percentile))]$$

NB:
Bright sources tend to have their errors underestimated with values as low as $10^{-6}$, which is unrealistic. So to avoid high $chi^2$ due to unrealistic small errors, we clip the error to get a minimum value of 0.1% (i.e. all errors smaller then $10^{-3}$ are set to $10^{-3}$).

In [30]:
def outliers(x, y, xerr, yerr, labels=["x", "y"], savefig=False):
    
    import matplotlib
    import matplotlib.gridspec as gridspec
    from astropy import visualization as vz
    
    fig = plt.figure(figsize=(13, 6))

    gs1 = gridspec.GridSpec(1, 1)
    gs1.update(left=0.05, right=0.4, wspace=0.05)
    ax1 = plt.subplot(gs1[:, :-1])

    gs2 = gridspec.GridSpec(1, 3)
    gs2.update(left=0.47, right=0.98, hspace=0.05, wspace=0.05)
    ax2 = plt.subplot(gs2[:, :-1])
    ax3 = plt.subplot(gs2[:, -1], sharey=ax2)

    
    # Use only finite values
    mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(xerr) & np.isfinite(yerr)
    x = np.copy(x[mask])
    y = np.copy(y[mask])
    xerr = np.copy(xerr[mask])
    yerr = np.copy(yerr[mask])
    
    # mag1 - mag2
    diff = y - x

    x_label, y_label = labels
    
    # If the difference is all NaN there is nothing to compare.
    if np.isnan(diff).all():
        print("No sources have both {} and {} values.".format(
            x_label, y_label))
        print("")
        return
    
    # Set the minimum error to 10^-3
    np.clip(xerr, 1e-3, np.max(xerr), out=xerr)
    np.clip(yerr, 1e-3, np.max(yerr), out=yerr)

    # Median, Median absolute deviation and 1% and 99% percentiles
    diff_median = np.median(diff)
    diff_mad = np.median(np.abs(diff - diff_median))
    diff_1p, diff_99p = np.percentile(diff, [1., 99.])
    diff_25p, diff_75p = np.percentile(diff, [25., 75.])
    
    
    diff_label = "{} - {}".format(y_label, x_label)

    print("{} ({} sources):".format(diff_label, len(x)))
    print("- Median: {:.2f}".format(diff_median))
    print("- Median Absolute Deviation: {:.2f}".format(diff_mad))
    print("- 1% percentile: {}".format(diff_1p))
    print("- 99% percentile: {}".format(diff_99p))

    
    # Chi2 (Normalized difference)   
    ichi2 = np.power(diff, 2) / (np.power(xerr, 2) + np.power(yerr, 2))
    
    # Use only non-null values of ichi2
    mask2 = ichi2 != 0.0
    diff, ichi2 = np.copy(diff[mask2]), np.copy(ichi2[mask2])
    x, y, xerr, yerr = np.copy(x[mask2]), np.copy(y[mask2]), np.copy(xerr[mask2]), np.copy(yerr[mask2])

    # Outliers (5sigma)
    log_ichi2_25p, log_ichi2_75p = np.percentile(np.log10(ichi2), [25., 75.])
    out_lim = log_ichi2_75p + 3.2*abs(log_ichi2_25p-log_ichi2_75p)
    
    outliers = np.log10(ichi2) > out_lim 
    nb_outliers = len(x[outliers])
    
    print("Outliers separation: log(chi2) = {:.2f}".format(out_lim))
    print("Number of outliers: {}".format(nb_outliers))

    print("")

    # Comparing mag
    ax1.scatter(x, y, marker='.', alpha=0.1, s=50)
    ax1.scatter(x[outliers], y[outliers], marker='.', c='b', alpha=0.3, s=50, label='Outliers ({})'.format(nb_outliers))
    min_val = np.min(np.r_[x, y])
    max_val = np.max(np.r_[x, y])
    ax1.autoscale(False)
    ax1.plot([min_val, max_val], [min_val, max_val], "k:")
    ax1.invert_xaxis()
    ax1.invert_yaxis()
    ax1.set_xlabel(x_label)
    ax1.set_ylabel(y_label)
    ax1.legend(loc='lower right', numpoints=1)
    

    # Chi2 vs Diff
    #ax1.set_yscale('log')    # to place before scatter to avoid issues
    ax2.scatter(diff, np.log10(ichi2), marker='.', alpha=0.1, s=50)
    if nb_outliers != 0:
        ax2.scatter(diff[outliers], np.log10(ichi2[outliers]), marker='.', alpha=0.3, s=50, color='b',\
                    label='Outliers ({})'.format(nb_outliers))
    ax2.axhline(out_lim, color='grey', linestyle=':')
    ax2.set_xlabel(diff_label)
    ax2.set_ylabel('log(chi2)')
    ax2.legend(loc='lower right', numpoints=1)
    
    # Hist
    n, bins, patches = vz.hist(np.log10(ichi2), ax=ax3, bins='knuth', facecolor='red', lw = 2, alpha=0.5,\
                                   orientation="horizontal")
    if nb_outliers > 3:
        n, bins, patches = vz.hist(np.log10(ichi2[outliers]), ax=ax3, bins='knuth', facecolor='b', lw = 2, alpha=0.7,\
                                   orientation="horizontal")
    ax3.axhline(out_lim, color='grey', linestyle=':')
    ax3.yaxis.set_tick_params(labelleft=False)
    
    # Save ex. fig
    if savefig:
        survey_label = ((diff_label.replace(" ", "_")).replace("(", "")).replace(")", "")
        figname = field + "_outliers_" + survey_label + ".png"
        plt.savefig("/data/help/plots/" + figname, bbox_inches='tight')


    display(fig)
    plt.close()
In [33]:
for band_of_a_kind in all_bands:
    for band1, band2 in itertools.combinations(band_of_a_kind, 2):

        basecol1, basecol2 = band1.replace(" ", "_").lower(), band2.replace(" ", "_").lower()
        
        if basecol1 == "gpc1_g" and basecol2 == "megacam_g":
            savefig = True
        else:
            savefig = False
        
        # Aperture mag
        col1, col2 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2)
        ecol1, ecol2 = "merr_ap_{}".format(basecol1), "merr_ap_{}".format(basecol2)
        outliers(master_catalogue[col1], master_catalogue[col2],
                 master_catalogue[ecol1], master_catalogue[ecol2],
                 labels=("{} (aperture)".format(band1), "{} (aperture)".format(band2)))
        
        # Tot mag
        col1, col2 = "m_{}".format(basecol1), "m_{}".format(basecol2)
        ecol1, ecol2 = "merr_{}".format(basecol1), "merr_{}".format(basecol2)
        outliers(master_catalogue[col1], master_catalogue[col2], 
                 master_catalogue[ecol1], master_catalogue[ecol2],
                 labels=("{} (total)".format(band1), "{} (total)".format(band2)), savefig=savefig)

for j in range(10):
    plt.close()
Megacam u (aperture) - WFC u (aperture) (4679 sources):
- Median: -0.06
- Median Absolute Deviation: 0.25
- 1% percentile: -0.9491949844360351
- 99% percentile: 3.2663552665710673
Outliers separation: log(chi2) = 6.85
Number of outliers: 0

Megacam u (total) - WFC u (total) (4710 sources):
- Median: -0.27
- Median Absolute Deviation: 0.21
- 1% percentile: -1.6218692207336425
- 99% percentile: 2.0539311504363935
Outliers separation: log(chi2) = 6.28
Number of outliers: 0

WFC g (aperture) - GPC1 g (aperture) (153753 sources):
- Median: 0.14
- Median Absolute Deviation: 0.27
- 1% percentile: -2.2427005767822266
- 99% percentile: 2.033579864501964
Outliers separation: log(chi2) = 5.72
Number of outliers: 0

WFC g (total) - GPC1 g (total) (154403 sources):
- Median: 0.03
- Median Absolute Deviation: 0.24
- 1% percentile: -1.7712992477416993
- 99% percentile: 2.537885017395027
Outliers separation: log(chi2) = 5.01
Number of outliers: 0

Megacam g (aperture) - GPC1 g (aperture) (265300 sources):
- Median: 0.33
- Median Absolute Deviation: 0.38
- 1% percentile: -2.1852089309692384
- 99% percentile: 2.9429248237609884
Outliers separation: log(chi2) = 7.20
Number of outliers: 0

Megacam g (total) - GPC1 g (total) (325281 sources):
- Median: -0.02
- Median Absolute Deviation: 0.28
- 1% percentile: -1.8667194366455078
- 99% percentile: 3.1858844757080105
Outliers separation: log(chi2) = 5.70
Number of outliers: 1708

Megacam g (aperture) - WFC g (aperture) (323278 sources):
- Median: 0.11
- Median Absolute Deviation: 0.14
- 1% percentile: -0.5078629302978516
- 99% percentile: 0.8724484062194824
Outliers separation: log(chi2) = 5.27
Number of outliers: 0

Megacam g (total) - WFC g (total) (366585 sources):
- Median: -0.05
- Median Absolute Deviation: 0.15
- 1% percentile: -0.9023867797851562
- 99% percentile: 1.4200260162353513
Outliers separation: log(chi2) = 4.63
Number of outliers: 36

WFC r (aperture) - GPC1 r (aperture) (271357 sources):
- Median: 0.10
- Median Absolute Deviation: 0.15
- 1% percentile: -1.1390761566162109
- 99% percentile: 1.2963315582275396
Outliers separation: log(chi2) = 5.27
Number of outliers: 0

WFC r (total) - GPC1 r (total) (271116 sources):
- Median: 0.01
- Median Absolute Deviation: 0.14
- 1% percentile: -0.9766998291015625
- 99% percentile: 1.7165836334228493
Outliers separation: log(chi2) = 4.66
Number of outliers: 4

Megacam r (aperture) - GPC1 r (aperture) (277093 sources):
- Median: 0.26
- Median Absolute Deviation: 0.25
- 1% percentile: -1.1256249999999999
- 99% percentile: 2.31932868957521
Outliers separation: log(chi2) = 7.14
Number of outliers: 0

Megacam r (total) - GPC1 r (total) (351257 sources):
- Median: -0.08
- Median Absolute Deviation: 0.14
- 1% percentile: -1.0307445526123047
- 99% percentile: 2.285899467468262
Outliers separation: log(chi2) = 5.38
Number of outliers: 2538

Megacam r (aperture) - WFC r (aperture) (475562 sources):
- Median: 0.13
- Median Absolute Deviation: 0.15
- 1% percentile: -0.545387954711914
- 99% percentile: 1.148755531311045
Outliers separation: log(chi2) = 5.61
Number of outliers: 0

Megacam r (total) - WFC r (total) (543068 sources):
- Median: -0.08
- Median Absolute Deviation: 0.14
- 1% percentile: -0.9950507736206055
- 99% percentile: 1.6092028617858827
Outliers separation: log(chi2) = 4.86
Number of outliers: 39

WFC i (aperture) - GPC1 i (aperture) (227802 sources):
- Median: 0.03
- Median Absolute Deviation: 0.14
- 1% percentile: -0.9575976371765137
- 99% percentile: 1.025598430633543
Outliers separation: log(chi2) = 4.61
Number of outliers: 9

WFC i (total) - GPC1 i (total) (227890 sources):
- Median: -0.06
- Median Absolute Deviation: 0.15
- 1% percentile: -0.9996103668212891
- 99% percentile: 1.1026660823821937
Outliers separation: log(chi2) = 4.66
Number of outliers: 0

No sources have both GPC1 i (aperture) and Megacam i (aperture) values.

Megacam i (total) - GPC1 i (total) (185057 sources):
- Median: -0.17
- Median Absolute Deviation: 0.12
- 1% percentile: -0.8306443786621094
- 99% percentile: 1.6147754669189462
Outliers separation: log(chi2) = 5.17
Number of outliers: 2

No sources have both WFC i (aperture) and Megacam i (aperture) values.

Megacam i (total) - WFC i (total) (227049 sources):
- Median: -0.08
- Median Absolute Deviation: 0.20
- 1% percentile: -0.9779530334472656
- 99% percentile: 1.4092513275146472
Outliers separation: log(chi2) = 4.89
Number of outliers: 1

WFC z (aperture) - GPC1 z (aperture) (16930 sources):
- Median: -0.01
- Median Absolute Deviation: 0.15
- 1% percentile: -1.107154884338379
- 99% percentile: 0.9230419921874998
Outliers separation: log(chi2) = 4.21
Number of outliers: 0

WFC z (total) - GPC1 z (total) (16922 sources):
- Median: -0.09
- Median Absolute Deviation: 0.19
- 1% percentile: -1.4533742713928222
- 99% percentile: 0.9829817771911655
Outliers separation: log(chi2) = 4.64
Number of outliers: 0

Megacam z (aperture) - GPC1 z (aperture) (264448 sources):
- Median: 0.22
- Median Absolute Deviation: 0.26
- 1% percentile: -1.4052535629272458
- 99% percentile: 2.777841310501098
Outliers separation: log(chi2) = 6.36
Number of outliers: 314

Megacam z (total) - GPC1 z (total) (328037 sources):
- Median: -0.13
- Median Absolute Deviation: 0.17
- 1% percentile: -1.3188536834716795
- 99% percentile: 2.2258390808105473
Outliers separation: log(chi2) = 5.55
Number of outliers: 1651

Megacam z (aperture) - WFC z (aperture) (15737 sources):
- Median: 0.14
- Median Absolute Deviation: 0.17
- 1% percentile: -0.6397380828857422
- 99% percentile: 3.043675384521484
Outliers separation: log(chi2) = 5.31
Number of outliers: 0

Megacam z (total) - WFC z (total) (18456 sources):
- Median: -0.04
- Median Absolute Deviation: 0.22
- 1% percentile: -0.9952455520629883
- 99% percentile: 2.1356584072113094
Outliers separation: log(chi2) = 5.02
Number of outliers: 0

No sources have both GPC1 y (aperture) and Megacam y (aperture) values.

Megacam y (total) - GPC1 y (total) (10253 sources):
- Median: 0.57
- Median Absolute Deviation: 0.41
- 1% percentile: -1.1729692840576171
- 99% percentile: 3.220444412231445
Outliers separation: log(chi2) = 5.86
Number of outliers: 0

4. Aperture correction issues

In [34]:
def apcor_check(x, y, stellarity, labels=["x", "y"], savefig=False):
    import matplotlib.gridspec as gridspec
    from astropy import visualization as vz
    
    #fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 6))   # 
    fig = plt.figure(figsize=(13, 6))

    gs1 = gridspec.GridSpec(1, 1)
    gs1.update(left=0.05, right=0.4, wspace=0.05)
    ax1 = plt.subplot(gs1[:, :-1])

    gs2 = gridspec.GridSpec(1, 3)
    gs2.update(left=0.47, right=0.98, hspace=0.05, wspace=0.05)
    ax2 = plt.subplot(gs2[:, :-1])
    ax3 = plt.subplot(gs2[:, -1], sharey=ax2)

    
    # Use only finite values
    mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(stellarity)
    x = np.copy(x[mask])
    y = np.copy(y[mask])
    stellarity = np.copy(stellarity[mask])


    diff = y - x

    x_label, y_label = labels
    
    # If the difference is all NaN there is nothing to compare.
    if np.isnan(diff).all():
        print("No sources have both {} and {} values.".format(
            x_label, y_label))
        print("")
        return
    
    
    diff_label = "{} - {}".format(y_label, x_label)
    print("{}:".format(diff_label))
    
    # Subsample
    zoom = (x > 16) & (x < 20)


    # Comparing mag
    ax1.scatter(x, diff, marker='.', alpha=0.1, s=50)
    ax1.invert_xaxis()
    ax1.set_ylabel(diff_label)
    ax1.set_xlabel(x_label)
    

    # Zoom Plot
    y_min, y_max = np.percentile(diff[zoom], [1., 99.])
    y_delta = .1 * (y_max - y_min)
    y_min -= y_delta
    y_max += y_delta

    if len(x[zoom]) < 1000:
        alpha = 0.4
    else:
        alpha = 0.1
    print(len(x[zoom]))
    pl = ax2.scatter(x[zoom], diff[zoom], marker='.', alpha=alpha, s=50, c=stellarity[zoom], cmap="jet")
    ax2.invert_xaxis()
    ax2.set_ylabel(diff_label)
    ax2.set_xlabel(x_label)
    ax2.set_ylim([y_min, y_max])
    fig.colorbar(pl, label="stellarity (1=star)")
    
    #ax2.legend(loc='lower right', numpoints=1)
    
    # Hist
    n, bins, patches = vz.hist(diff[zoom], ax=ax3, bins='knuth', facecolor='black', lw = 2, alpha=0.5,\
                                   orientation="horizontal")
    ax3.yaxis.set_tick_params(labelleft=False)
    
    # Save ex. fig
    if savefig:
        survey_label = ((diff_label.replace(" ", "_")).replace("(", "")).replace(")", "")
        figname = field + "_apcorrIssues_" + survey_label + ".png"
        plt.savefig("/data/help/plots/" + figname, bbox_inches='tight')


    display(fig)
    plt.close()
In [35]:
for band_of_a_kind in all_bands:
    for band1, band2 in itertools.combinations(band_of_a_kind, 2):

        basecol1, basecol2 = band1.replace(" ", "_").lower(), band2.replace(" ", "_").lower()
       
        if basecol1 == "gpc1_r" and basecol2 == "wfc_r":
            savefig = True
        else:
            savefig = False
            
        # Aperture mag
        col1, col2 = "m_ap_{}".format(basecol1), "m_ap_{}".format(basecol2)

        apcor_check(master_catalogue[col1], master_catalogue[col2], master_catalogue['stellarity'],
                 labels=("{} (aperture)".format(band1), "{} (aperture)".format(band2)), savefig=savefig)

for j in range(10):
    plt.close()
Megacam u (aperture) - WFC u (aperture):
451
WFC g (aperture) - GPC1 g (aperture):
12375
Megacam g (aperture) - GPC1 g (aperture):
18322
Megacam g (aperture) - WFC g (aperture):
9299
WFC r (aperture) - GPC1 r (aperture):
32574
Megacam r (aperture) - GPC1 r (aperture):
31189
Megacam r (aperture) - WFC r (aperture):
24879
WFC i (aperture) - GPC1 i (aperture):
42651
No sources have both GPC1 i (aperture) and Megacam i (aperture) values.

No sources have both WFC i (aperture) and Megacam i (aperture) values.

WFC z (aperture) - GPC1 z (aperture):
5082
Megacam z (aperture) - GPC1 z (aperture):
56974
Megacam z (aperture) - WFC z (aperture):
3902
No sources have both GPC1 y (aperture) and Megacam y (aperture) values.